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THE INVERSE PROBLEM 
FOR SMALL RANDOM PERTURBATIONS 

OF DYNAMICAL SYSTEMS 

BY 

YURI KIFER 

ABSTRACT 

What can one get to know about the dynamical system from its small random 
perturbation? What can one say about solutions of an ordinary ditterential 
equation ~, =B(x , )  having some information on its singular perturbation 
operator L" = eL + (B, V) with L being an elliptic second order operator? 
These problems are studied in the paper. 

1. Introduction 

Let S' be a continuous in t group of homeomorphisms (the flow) of a complete 

metric locally compact space X with t being a continuous parameter - 0o < t < oo 

or a discrete one t . . . .  , - 2 , -  1 , 0 , 1 , 2 , - . . .  

Consider a family of time-homogeneous Markov processes x7 in X with 

continuous trajectories, where e is a positive parameter. Let P" (t, x, V) be the 

transition probability of x ~ and suppose that all x 7 satisfy the Feller property (see 

[2]), i.e., for any continuous function f on X the function P~f defined by 

(1.1) PTf(x) = fx P` (t, x, a y ) / ( y )  

is also continuous. 

The family x 7 is called a small random perturbation of the dynamical system S' 
if for any continuous f and all t > 0, 

(1.2) sup IPTf(x)-f(S'x)[---~O as e ---~0. 
x E X  

We distinguish two general problems about small random perturbations of 

dynamical systems. The first one is the direct problem, i.e., the study of 
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asymptotic behaviour as e--~ 0 of parameters of the process x7 provided some 

information about the dynamical system S' and the type of perturbations are 

known. The second one is the inverse problem, i.e., the study of the dynamical 

system S' when the asymptotic behaviour as e--->0 of some probabilistic 

parameters of the processes x~ is known. 

Most papers on this matter deal with the direct problem (see, for instance, [2] 

and [7]). Some papers can be considered as dealing with both kinds of problems 

(see [4] and [6]). An example of the inverse problem is given by the Hasminskii's 

lemma (see [3]). It claims that if/z" is an invariant measure of the process x ~ and 

for some sequence ei---*0 there is a weak limit 

(1.3) (w) lim ~ ~, 

then/z is an invariant measure of the dynamical system S'. 
In this paper we consider other examples of the inverse problem which have 

applications to the elliptic singular perturbation problem in the theory of partial 

differential equations. 

Let there be given a bounded connected open set G C X with the boundary 

OG. Denote by r the exit time from G, i.e., 

(1.4) 7 = i n f { t _ - > 0 : x ~  G}. 

As usual, denote by P~{A} and E~:  the probability of the event A and the 

expectation of the random value ~:, respectively, for the process x ~ starting at x. 

We shall prove that the asymptotic behaviour as t .--> oo and e --~0 of P~{~" > t} 

and E~z determines whether the dynamical system S' has a closed invariant set 

in G U OG or not. Under some conditions the asymptotic behaviour of P~{r > t} 

is determined by the asymptotics of the principal eigenvalue of the operator P7 

defined by (1.1). 

When x7 is the diffusion perturbation of the smooth dynamical system S' then 

we shall find the connection between the existence of the invariant set of the 

dynamical system S' in G U OG and the asymptotic behaviour of the principal 

eigenvalue and the solution of the Poisson boundary value problem for the 

corresponding elliptic singularly perturbed operator. 

2. The general case 

A set A(G) C G U OG is called the maximal invariant (under the action of S') 
set in G U c~G if any set l) satisfying the property 
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(2.1) S ' I I = E I C G U O G  f o r a l i t E ( - ~ , ~ )  is a subset of A(G), 

i.e., El C A(G). Obviously, A(G) is a closed set (maybe empty). 

The main result is the following theorem. 

THEOREM 2.1. (a) If for some x E G, 

1 In P : { r  > t}  > - 0% (2.2) lira sup iim sup 

then the maximal invariant set A(G) is not empty; 

(b) I[ for some x E G, 

(2.3) 

then the set A(G) is not empty. 

lim sup E~" = 0% 
e - - * O  

PROOF. Suppose that A(G) is empty. Then there is an open bounded domair  

t~ D G tO OG such that the corresponding set A(t~) is also empty. 

Indeed, it is easy to see that if G1 C G2 then A(G,) C A(G2). Take the sequence 

{G,,} of open domains such that 

(2.4) G, D G2 D G3"" 

If A ( G , , ) # O  for all m =>1 then 

and n G,. = G tO OG. 

(2.5) A =  ('~ A ( G , , ) # O  
?rI ~-> 1 

since A(G,,) is closed and A(G,) D A(G2) D A(G3) D . . - .  

It is clear that A is invariant with respect to S' and A C G UaG.  Thus 

4)# A C A(G). This contradicts our assumption and we conclude that for some 
> mo = 1, 

It remains to set (~ = G,,o. 

For any x ~ (~ U a(~ put 

(2.6) 

Let us prove that 

(2.7) 

A(G,..) = 0 .  

t(x ) = inf{t -> 0: S ' x ~  G U aG}. 

t (x)<o0 for each x E G to a(_~. 
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Indeed, if t(Xo)=oo then S'xoE t~ U a(~ for all t =>0. Thus for some sequence 

t, 1' oo and a point y ~ t~ U at~ one has 

S ' ~  as t, 1' ~. 

Then also 

S'.+'Xo--~S'y as t. ~' oo for any t E ( -oo,  oo). 

One easily obtains from here that S'y E 0 U 8 0  for all t E ( - oo, oo) and so the 

set {S'y, t ~ ( - oo,oo)} C A(O)  = f~. This contradiction proves (2.7). 

From the upper semicontinuity of t(x) we conclude that 

(2.8) T =  sup t (x)<oo.  
x E O U a O  

Notice that (1.2) implies the following condition: 

(2.9) limsupP~{dist(xT, S ' x )>8}=O f o r a n y S > 0  and t > 0 .  

Now by (2.6)-(2.9) one easily obtains that 

(2.10) p(e) = sup P~{~" > T}--->0 as e ---~0. 
x E G  

By the Markov property (see [2]), 

P~{z > mT} = E ~ X ~ > T E ~ x ~ X , > T  "" " E x ; X , > T  

( 2 . 1 1 )  
_-__ [p(e)]', 

where XA is the indicator of the event A. 

Since P;{~" > t} decreases in t then we get 

(2.12) 0 1  = l i m s u p ~  lnP :{ r  > t } N  lno(e) .  
f ~  

Taking into account (2.10) one concludes by (2.12) that for any x E G, 

(2.13) O~--+-  ~ as e --+0 

that contradicts (2.2). Thus our assumption that A ( G ) =  O is inconsistent. 

To prove the item (b) notice that 

(2.14) E:~" _--< T ~ P:{~" > ( m  - 1)T}. 
m = l  
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Assumption A ( G ) =  O gives, in view of (2.10), (2.11) and (2.14) for e small 

enough and x E G, that 

(2.15) E : r  <_- T ~ [O(e)]"-' <oo. 
m = l  

This contradiction with (2.3) completes the proof of Theorem 2.1. 

3. Diffusion perturbation and application to the elliptic singular perturbation 

problem 

Let X be the Euclidean space R"  and x,  be a diffusion process in R"  

generated by the elliptic differential operator of the second order 

(3.1) L~ =e2L+(B'V) '  V= (~x~ " '"  t9 ) 
' ' Ox. ' 

with smooth coefficients, where L is a nondegenerate elliptic operator and 

(3.2) d (dlX) = B (S'x). 

Assume that the bounded domain G has smooth boundary OG. Under these 

circumstances, by lemma 3.1 of [5] one obtains that for any x E G there is a limit 

1 
(3.3) A t = li_m ~ In P•{r > t}, 

where ~- is defined by (1.4) and a" turns out to be the principal eigenvalue of the 

Dirichlet problem for the operator L" in the domain G. 

Under assumptions of this paragraph we can improve the first part of Theorem 

2.1 in the following way. 

THEOREM 3.1. The dynamical system S' has no invariant set in G U OG, i.e., 
A(G) = 0 ,  if and only if 

(3.4) l i m h  ~ = - oo. 
e--.O 

PROOf. If A(G) = O then by Theorem 2.1 we get lim supt-.0 h ~ = - oo and so 

lim,-.o A t = -oo. This follows also from the paper [8]. 

Suppose now that (3.4) is true and prove that A(G) = 0 .  To do this we assume 

that A ( G ) #  O and prove that 

(3.5) lim sup A t > _ oo. 
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We shall see that, in fact, also 

(3.6) lim~__.oinf a" > - oo, 

if we assume A ( G ) #  0 .  

Set G, = {x E G : dist (x, OG) > p}, Up (z) = {y :1 z - y 1< p}, and denote  by ~7 

the origin. 

Let  x E A(G),  i.e., S'x E G U aG for all t. It is easy to see that one  can find 

positive numbers eo, 6, r2 < r~ < 1 and some points Q,, E U:(6),  m = 0,1, 2 , . . . ,  

such that the balls V~2 ~ = U,,(Qr,) and V~ ~ = U,~(Qm ) satisfy for all m = 0, 1, 2 , . . .  

the following properties: 

(i) U2((7) D V~ ) D (V~,) U aVg )) U (V~  k, U 0V2'+,); 
(ii) eV~)+Sm~+'x C G for all tE[O,  6] and all e G[0,  eo]; 

(iii) e V ~ + S ' ~ x  C G, n U 2 , ( S ~ x )  for all e E [0, eo]. 

The main step in the proof of Theorem 3.1 is the following result. 

LEMMA 3.1. There is q > 0 such that for all m = 0, 1, 2 , - .  �9 one has 

(3.7) inf P ; { x ~ E  e V ~ ) + ,  + S " + ' ~ x  a n d  r > 6}=> q, 
z E e V  (m2)+Smlix 

provided 0 < e <= st,, where, recall, ~ is the exit time from G for the process x 7. 

PROOF. Let A (z)  be the matrix of coefficients of the operator  L in second 

order  derivatives and b (z)  be the vector of coefficients in first order derivatives, 

i.e., 

L = ~(A (z)V, V) + (b (z), V). 

The process x[ satisfies the following stochastic differential equation: 

(3.8) dx [ = ecr(x [)dw, + (e ~-b (x 7) + B (x 7))dr, 

where t r ( z ) a * ( z ) =  A ( z )  and w, = (w~, . . . ,  wT) is the Wiener process. 

�9 �9 = x ,  - S x. Let z ~(t) be the solution of the For any m = 0, 1,2,- set y[ , (0  ~ ,,8+, 

stochastic differential equation 

(3.9) dz2( t )  -- e t r ( z2 ( t )+  S"~*'x)dw, + e2b( z2 ( t )+  sm~+tx)dt. 

The processes y ~,(t) and z ;,(t) differ just in drift, hence by Girsanov's formula 

(see, chapter 7 of [2]) and the properties of the domains V~ ~ and V~ ~ one gets 
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P'.{x~E sV~+~ + S~m+~)Sx and ~" > 8} 

>- e'.{x ~ ~ e V~+~ + S ~m +l)Sx and x~ E e V~ ~ + S"~+'x for all t E [0, 8]} 

(3.10) = P ~ - ' ~ 1 7 6  

dtzy~. (z ~,) 

= E ~ / e , o  X v*,,,(8) e V~)+, X v~(t) E V ~ for all t E t0,81 dlz.z, (ev.,), 

m8 e where z., = z - S  x, v2(t) = z ~ e ,  P;,o and E;.o denote the probability and the 

expectation of nonhomogeneous processes starting in zero time at y, and 

(3.11) ~ (ev~,)=exp h,( t ,w)dwi-~l-~ f ~ h 2 ( r ,  oJ)dt 
d/z~,~ ao ,=, zs  Jo i=1 ' 

where h(t, w) = (h~(t, w ) , . . . ,  h, (t, w)) defined by the formula 

h(t, oJ) = r + S'~+'x)(B(ev~(t)  + Sm~+'x) - B(Sm~+'x)). 

Let 0,. be the exit time for the process v~,(t) from V~;  then (see [2]) 

(ff  ,f_ (fom,O, .o, :)2 E~X~>8 h, (t, w)dw <= E:  h, (t, r 
i = l  i=1 

~min(8"Om) s 2( 
=EZJo ,=1 h t,w)dt. 

Therefore by (3.11) and Chebyshev's inequality we easily get that for any 

v @ V ~  ) a n d e a c h  a > 0 ,  

P:.o {v,~.(t) e V "  for all t e 10, al and ~ (sv[.) < e -~} 
d ~  

(3.12) 
Po.o 8 . ~ > 6 a n d  ~ , ~ h . ( t ,  oa)dt 1 = ~ " - -  h,(t, oJ)dw ~, > a  

i = l  e ,JO i = l  

M 
~ a  2~ 

where M depends just on the upper bounds of the norm II~-'(z)ll and the 

derivatives of the vector function B(z) ,  but not on e and a. 

On the other hand, by the definition of v2(t)  and the properties of the 

domains V~ ) and V~ ~ one can easily see from the uniform estimates from below 
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of the fundamental solution of the parabolic equation in a bounded domain 

given in theorem 8 of [1] that if v E V~ ) then 

(3.13) P~,.0{v;(8) E V~)+~ and v ~ ( t ) E  V 0) for all t • [0 ,8 ]}>p  > 0 ,  

for some constant p > 0  independent of m,e  and v E Vr ). Taking z ~ eV~)+ 

S"~x in (3.10) we obtain that zm/e E V~ ~ in (3.10). Therefore setting a = 2 M/o  

one gets (3.7) by (3.10), (3.12) and (3.13) with q = �89 exp(-~v/2M/p).  

Now we can complete the proof of Theorem 3.1. By the Markov property for 

z EeV~o2)+x one has 

P:{r > kS} 

= E:X,>sE~x,>s "'" E~X,>8 

(3.14) >= E~x,>8)C4~v~,+s,xE~g,>sX4e~v~,+s.-,~ . . .  E~x,>~X4e~v~,+s,*~ 

i }]' => inf inf P : { x ; E  eV~)+~ + S~'+'Sx and z > 8 
(2) m ~  

L m ~ 0 , 1 ,  " ' '  z~eVm+S X 

~qk. 

Hence, by (3.3) for all e _-< eo, 

(3.15) A" > 1 = ~  lnq 

that contradicts (3.4) and proves Theorem 3.1. 

Notice that the function u ~ (x) = E ~ ~" is the solution of the problem (see [2]) 

(3.16) L ' u  ~ = - 1, uS 1~ = 0. 

The second part of Theorem 2.1 can be amplified as follows. 

THEOREM 3.2. (a) I f  for some x E G, 

lim sup u" (x)  = og 
e - - * O  

then the dynamical system S' has a nonempty invariant set A ( G ) C  G U OG; 

(b) I f  for any x E G, 

(3.17) lim inf u ~ (x )  < oo, 

then the open domain G contains no invariant with respect to S' closed subset; 

(c) The item (b) cannot be improved, i.e., the case when for any x E G 
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(3.18) lim sup u ~ (x) < oo 
e--*O 

and A(G) ~ O is possible. 

PROOI=. The item (a) follows immediately from the item (b) of Theorem 2.1. 

Suppose now that G contains an invariant closed subset A. Then there is 

positive 8 = inf~^  dist (x, OG) and (2.9) is also true. Therefore  one can easily get 

from [7] that for any x U A and N > 0 

(3.19) P~{r < N}-->0 as e --*0. 

But 

(3.20) E : r  => 2 (m - 1)Px{(m - 1) _-__ I" < m} = NP:{~" >= N}. 
m = l  

Thus by (3.19), 

lim inf E ~'r > N 

for any N and so 

lim inf E ~ z = oo 

that contradicts (3.17) and proves the item (b) of Theorem 3.2. 

Now let us describe the example which satisfies (3.18) and A ( G ) ~  O. Let 

n ----2, 

(3.21) 
o 2 ) _ a 1 2 O + x l - -  

L ~ = -~ + ~ - x2 ax~ ax2 

and G = {(xl, x2) : (Xl - 1) 2 + x,  2 < 1}. 

In this case A(G)  is the one point (0,0) and for any x = (xl, x2), 

= ( c o s t  - s i n t ~ ( x l ~  
(3.22) S'x \sin t cos t / \ x g  " 

Therefore  for each x ~ G there is i (x)~[Tr /2 ,27r ]  such that Si~X)x~ G U OG. 
Let p ~ (t, x, y) be the transition density of the process x 7 generated by L ~ in the 

whole plane R 2. Then 

(3.23) p~(t, x, y) = 2---~-~e2 exp -~-~e2 l Y - S'x 12 . 
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If y E U, (SitX~x), then by (3.23) 

(3.24) p" (t, x, y) => (2r XFee 2)-1. 

The area of U, (SitX)x) n (R2\ G) is greater than r 2/2 and by (3.24) one gets 

P:{'r < 2rr} _--- P:{r </(x)} 

>= P:{x~,)~_ G} 
(3.25) 

>= P~{x~it,, ~ U, (Si'X)x ) n (R2\ G)} 

=> (4Ve) '. 

Thus P~{~-> 2 r r } -  < 1 -  (4X/e)-' and using the Markov property in the same 

way as in (2.11) we obtain 

PY,{r > 27rm} = (1 - (4 XFe)-') m. 
(3.26) 

Finally, 
0o 

E;r  =<2rr ~ P:{I" > 2 r r ( m  - 1)}_-< 8zr X/e<  oo 
r a i l  

that gives (3.18) in spite of A(G)= {(0,0)} # ~.  
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